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mixtures of particles that are either ion or electron conductors. The model predicts effective ionic and
electronic conductivities, three-phase boundary lengths, and hydraulic pore radii. The effective proper-
ties depend upon primary physical characteristics, including average particle-radii, volumetric packing
densities, particle contact angles, and porosity. All results are presented in nondimensional form, which
provides considerable generality in their practical application.
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. Introduction

composite electrodes play critical roles in most solid oxide
uel-cell (SOFC) architectures. A typical composite anode is a mix-
ure of Ni and yttria-stabilized zirconia (YSZ). A typical composite
athode is a mixture of lanthanum-doped strontium manganate
LSM) and YSZ. It is well known that the composite-electrode
rchitecture, including functional grading, is important to overall
uel-cell performance [1–3]. Recently, several groups have reported
ignificantly improved performance by introducing nanoscale
articles into composite electrodes [4–8]. There is certainly a
eed to understand quantitatively the influence of composite
icrostructure on fuel-cell operation. Applying that understanding

s important to the design, optimization, and fabrication of certain
icrostructure architectures as a means to achieve high fuel-cell

erformance.
Composite electrodes are frequently thought of and mod-

led as random mixtures of spherical particles. The mixtures
ontain electrolyte particles (e.g., ion conducting YSZ) and elec-
rode particles (e.g., electron conducting Ni). Composite-electrode
abrication usually begins by mixing together electrode and

lectrolyte particles followed by sintering at high temperature.
igh-resolution microscopic images of actual composite electrodes

eveal that the “particles” are not spherical, even when the particles
ay have been initially spherical before sintering [9]. Neverthe-

∗ Corresponding author. Tel: +1 303 273 3379; fax: +1 303 273 3602.
E-mail address: rjkee@mines.edu (R.J. Kee).

378-7753/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2009.02.051
less, models based upon random arrays of spherical particles
provide important qualitative insight and quantitative design guid-
ance.

The present paper develops and extends coordination-number
and percolation theory to predict effective properties of compos-
ite electrodes. Based upon theory at the particle scale, important
characteristics of the composite structure can be derived. Such
effective properties (e.g., electron and ion conductivity, three-
phase boundary length, and pore radius) are needed in larger scale
models that consider the entire fuel-cell system [10,11]. The effec-
tive properties depend upon microstructural features, including
particle-radii distributions, gas-phase porosity, particle overlap,
and relative electrode and electrolyte particle loading. The com-
posite performance also depends upon intrinsic properties (e.g.,
conductivity) of the particle materials. The results herein are
presented in nondimensional form, affording a degree of general-
ity.

The percolation theory in this paper builds on the founda-
tion of significant earlier literature. As part of a more general
effort to develop micromodels of SOFC systems, Costamanga et
al. [12,13] developed percolation models for composite electrodes.
Chan et al. [14,15] also developed SOFC micromodels that incorpo-
rate percolation-theory-based effective properties. Janardhanan et
al. [16] used percolation theory to predict three-phase boundary

lengths as functions of particle dimensions and packing den-
sity.

Percolation theory depends upon the concept of coordination
numbers, representing the number of contacts that a certain parti-
cle makes with neighboring particles. The micromodel developed

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:rjkee@mines.edu
dx.doi.org/10.1016/j.jpowsour.2009.02.051
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Nomenclature

ak,� cross-sectional area per contact between a k- and an
�-particle (m2)

AVed,el overall binary phase contact area per unit volume

(m−1)
AVs,g interfacial area per unit volume between the solid

particles and pores (m−1)
edk subscript for electrode particles in size class k
elk subscript for electrolyte particles in size class k
ed subscript for m kinds of electrode particles
el subscript for n kinds of electrolyte particles
lk,� contact perimeter between a k-particle and an �-

particle (m)
L geometric thickness of composite electrode (m)
Lter

el total thickness of grain boundary along the current
path (m)

M number of particle types
m kinds of size class for electrode particles
nV
k

number of k-particles per unit volume
nS
k

number of k-particles per unit electrolyte surface
area

n kinds of size class for electrolyte particles
Nk,� average contact number of �-particles with a k-

particle in an idealized medium
Pk percolation probability of k-particle
rk radii of k-particles (m)
rc neck radius between two connect particles (m)
rg hydraulic radius for gas flow (m)
r̃g nondimensional hydraulic radius
Rter

el ion-transport resistance (�)
S� surface-area fraction of all �-particles
S geometric cross-sectional area of composite elec-

trode (m2)
Ster

el effective contact surface area between el-particles
per particle layer (m2)

x fraction of solid surface areas belonging to the solid-
pore binary phase boundary area

Zk average number of contacts between a k-particle
and neighboring particles of all types

Zk,� average number of contacts between a k-particle
and �-particles

Z̄ overall average coordination number of all solid par-
ticles

Zel,el average coordination number for all n electrolyte
particles

Greek letters
ı thickness of boundary between particles (m)
� relative error between �kZk,� and ��Z�,k
�VTPB TPB length per unit volume (m2)
�VTPB,eff effective TPB length per unit volume (m2)

�̃V
TPB,eff nondimensional effective TPB length per unit vol-

ume
�S

TPB,eff effective TPB length per unit electrolyte surface area,

m−1

�̃S
TPB,eff nondimensional effective TPB length per unit elec-

trolyte surface area
� Bruggeman factor
 k volume fraction of k-particles relative to the total

solids
 c
k

percolation threshold of k-particles

 o
edk

relative volume fraction of k-class particles within

all m electrode particles
�g porosity
	tra,o intrinsic material conductivity (S/m)
	tra,eff effective intra-particle conductivity (S/m)
	̃tra,eff nondimensional effective intra-particle conductiv-

ity
	ter,o intrinsic conductivity of the particle interface (S/m)
	ter,eff effective inter-particle conductivity (S/m)
	̃ter,eff nondimensional effective inter-particle conductiv-

ity

 contact angle between two particles

�el effective relative density of electrolyte particles
�k number fraction of k-particles

by Bouvard and Lange has been widely used to estimate coordina-
tion numbers for binary systems [17]. Suzuki and Oshima developed
a theory that can be used to estimate coordination numbers in
multi-component mixtures [18–20].

The present paper develops some significant extensions of ear-
lier research. The approach considers multi-component particle
mixtures and satisfies the contact-number conservation require-
ment [12]. Based upon the underpinning functional forms, all the
effective properties are represented in nondimensional form. Con-
sequently, the results are general in the sense that they are not
specific to a particular electrode structure. Rather, once physical
parameters are specified, relevant effective properties can be easily
extracted from the nondimensional properties.

It should be mentioned that direct simulation of large particle
arrays is an alternative to percolation theory for estimating effective
properties [21–25]. Additionally, such multi-particle simulations
can provide quantitative information concerning the coordination
numbers that appear in the percolation theory.

2. Percolation theory

Percolation probabilities represent the likelihood that particles
are clustered in ways that form connected conduction pathways,
which is central to the effective functioning of a composite elec-
trode [3,13,21]. The concept of coordination numbers is central
to the practical implementation of percolation theory. Broadly
speaking, the coordination number represents the number of
contacts a particular particle makes with its neighboring parti-
cles.

Consider a multi-component mixture of randomly packed
spherical particles with M particle types (M is typically a small num-
ber). For example, in a binary mixture of Ni and YSZ particles each
with a single particle radius,M = 2. The average number of contacts
Zk between k-type particles and neighboring particles of all types
is

Zk =
M∑
�=1

Zk,�, (1)

where Zk,� is the number of contacts between a k-particle and �-
particles. Suzuki and Oshima proposed that Zk,� is proportional to
S� (the surface-area fraction of all �-particles) andNk,� (the average

contact number of all �-particles with a k-particle in a particular
idealized medium) [18,20]:

Zk,� = S�Nk,�. (2)
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he surface-area fractions can be estimated in terms of the particle
olume fractions  k as

� = nV
�

4�r2
�

M∑
k=1

nV
k

4�r2
k

= ��r
2
�

M∑
k=1

�kr
2
k

=  �/r�
M∑
k=1

 k/rk

(3)

here rk are the particle-radii. The volume fractions may be repre-
ented as

k = nV
k

4�r3
k
/3

M∑
�=1

nV
�

4�r3
�
/3

= nV
k
r3
k

M∑
�=1

nV
�
r3
�

, (4)

here nV
k

is the number of k-particles per unit volume. The num-
er fractions �k represent the fraction of k-particles, which can be
ritten as

k = nV
k

M∑
�=1

nV
�

=  k/r
3
k

M∑
�=1

 �/r
3
�

. (5)

he volume fractions k are defined relative to the total solid mate-
ials, with the gas-phase porosity �g specified independently. For
xample a composite electrode that is (by volume) 33% Ni, 33% YSZ,
nd 34% pores has  Ni =  YSZ = 0.5.

The average coordination number of all particles within an M-
omponent packed bed can be expressed as

¯ =
M∑
k=1

�kZk, (6)

here Zk represents the average contact number between k-type-
articles and all neighboring particles (Eq. (1)).

The variable Nk,� (Eq. (2)) is particular to a certain idealized
wo-component particle mixture (k and � particles) [18]. This ide-
lization rests upon two assumptions. First, the mixture is assumed
o be dominated by � particles with very few k-particles. In other
ords, �k (the fraction of k-particles) is nearly zero and �� (the

raction of � particles) is nearly unity. Second, the overall average
oordination number within the idealized medium is the same as it
s within an M-component mixture. With these assumptions, Nk,�
s a function of only Z̄ and the ratio of the particle-radii. In the case
hat all particles are the same (i.e., k = �), the relationship between

k,� and Z̄ is

k,k = Z̄ (7)

ombining Eqs. (2)(3) and (7), the coordination number among the
ame kind of particles Zk,k is a function of the volume fraction and
article-radii as

k,k = Z̄  k/rk
M∑
�

 �/r�

. (8)

his expression leads to a good estimate in binary particle mixtures
f the relationship between the percolation threshold for same-
ype particles (i.e., percolation threshold for k or � particles) and
he particle-size ratio (i.e., rk/r�) [12,26].

In cases where k /= �, the relationship between the Nk,� and Z̄ is

ore complicated than is indicated by Eq. (7). Suzuki and Oshina

roposed that Nk,� can be estimated as [18],

k,� = 0.5(2 −
√

3)Nk,k(rk/r� + 1)

1 + rk/r� − (rk/r�(rk/r� + 2))1/2
. (9)
Fig. 1. Relative error in contact conservation associated with applying Eq. (9) in a
multi-component particle mixture.

However, this expression does not satisfy the necessary contact-
number conservation principle (i.e., �kZk,� = ��Z�,k). Contact-
number conservation means that the net contact between the
k-particles and �-particles must be equal to the contact between �-
particles and k-particles [12]. The relative difference between �kZk,�
and ��Z�,k when using Eq. (9) can be evaluated as

� = |�kZk,� − ��Z�,k|
min(�kZk,�, ��Z�,k)

(10)

This relative error is a function of the particle-radii ratio (r�/rk),
but is independent of the average coordination number Z̄ and the
number of components M in the mixture. As illustrated in Fig. 1,
the relative error increases greatly as the particle sizes vary. Thus,
an alternative approach is needed to determine Nk,�.

Beginning with some fundamental principles of percolation the-
ory, an alternative approach is taken for evaluatingNk,�. For a binary
mixture, the following set of equations must hold:

Zk = Zk,k + Zk,�, Z� = Z�,� + Z�,k, (11)

Z̄ = �kZk + ��Z�, (12)

�kZk,� = ��Z�,k, (13)

�k + �� = 1, (14)

Zk,k = Nk,k
�kr

2
k

�kr
2
k

+ ��r2�
, Z�,� = N�,�

��r
2
�

�kr
2
k

+ ��r2�
, (15)

Zk,� = S�Nk,� (16)

Substituting Eqs. (11) and (13) into Eq. (12), the average coordina-
tion number can be written as

Z̄ = �kZk,k + ��Z�,� + 2�kZk,�. (17)

The coordination number Zk,� can be determined by substituting
Eq. (15) into Eq. (17), yielding

Zk,� = Z̄

2�k

(
1 − �2

k
r2
k

+ �2
�
r2
�

�kr
2
k

+ ��r2�

)
= 0.5(1 + r2k /r2� )S�Z̄ (18)

By comparing Eq. (18) with Eq. (16), it is evident that

Nk,� = 0.5(1 + r2k /r2� )Z̄. (19)

Eq. (19) is equally applicable for k = � and k /= �. It is clear that
Nk,� is a function of only Z̄ and the radii of the k- and �-particles.
Consequently, Eq. (19) can be used to evaluate the coordination
number between two particle types in a multi-component mixture.

Using Eq. (4), Eq. (18) can be rewritten in terms of the particle
volume fractions  k as
Zk,� = 0.5(1 + r2k /r2� )Z̄
 �/r�
M∑
k=1

 k/rk

. (20)
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ig. 2. Conceptual illustration of a composite SOFC electrode. The dark particles
epresent the electrode particles and the light particles represent the electrolyte.

he coordination number for the k-particles can be obtained by
ubstituting Eqs. (8) and (20) into Eq. (1), yielding

k =
M∑
�=1

Zk,� = Z̄

2

⎛
⎜⎜⎜⎜⎝1 + r2

k
M∑
�=1

��r
2
�

⎞
⎟⎟⎟⎟⎠ . (21)

he validity of the alternative model proposed above is supported
y comparison with an expression proposed by Bouvard and Lange
17]. Considering a binary mixture with an overall coordination
umber Z̄ = 6, Eq. (21) yields

k = 3 + 3r2
k

�kr
2
k

+ ��r2�
. (22)

his result is the same as that reported by Bouvard and Lange [17].
urther validation, as discussed below, is achieved by comparing
ith the computational simulated results for binary mixtures as

eported by Suzuki and Oshima [18].

. Binary mixture properties

Initially consider applying the percolation theory to a two-
omponent SOFC porous composite electrode that is composed
f ionic and electronic-conducting particles (labeled “el” for elec-
rolyte such as YSZ and “ed” for electrode such as Ni).1

.1. Percolation probabilities

Fig. 2 illustrates a two-component randomly packed mixture of
he spherical particles, where three different cluster types are rep-
esented for the electrolyte particles. Following the nomenclature
f Costamanga, et al. [12], such clusters may be characterized as
A clusters: The electrolyte particles form a percolated cluster that
extends through the entire thickness of the composite electrode

1 Throughout this paper the word “electrode” has two different, but commonly
sed, meanings. On one hand, electron-conducing particles are called electrode par-
icles. On the other hand, the entire composite structure is called the electrode. In
ontext, the meanings are clear.
urces 191 (2009) 240–252 243

(i.e., from the dense electrolyte to the electrode current collector).
B clusters: The electrolyte particles form a short network that is
connected only to the dense electrolyte. Such clusters can carry
ionic current into the composite-electrode structure, assuming
that there is sufficient connectivity within the electrode parti-
cles to carry electronic current and thus facilitate charge-transfer
reactions.
C clusters: The electrolyte particles form a completely isolated
cluster. These clusters are essentially ineffective in supporting
charge-transfer or current conduction.

The probability that electrolyte particles belong to an A-cluster
is defined as the percolation probability of the electrolyte particle.
The percolation probability can be estimated as [12]

Pel =
[

1 −
(3.764 − Zel,el

2

)2.5
]0.4

(23)

As can be seen from Eq. (8), the percolation probability depends
upon the particle volume fraction, the particle-radii, and the aver-
age coordination number Z̄. There is a threshold in the volume
concentration of the electrolyte particles c

el, called the percolation
threshold, below which the particles form only B and C clusters. For
volume fractions above the threshold, networks of A clusters are
formed. Above the percolation threshold, the composite electrode
still contains a few B and C clusters. However, Costamagna shows
that above the threshold most of the particles belong to A clusters
[12].

Combining Eqs. (8) and (23) shows that the percolation thresh-
olds for electrode and electrolyte particles may be represented in
terms of the threshold volume fractions ( c

ed and c
el) and the ratio

of particle-radii (rel/red) as

Zed,ed = Z̄  c
ed/red

 c
ed/red + el/rel

= 1.764 (24)

Zel,el = Z̄  c
el/rel

 ed/red + c
el/rel

= 1.764 (25)

These relationships assist in identifying parameters that are impor-
tant for predicting the performance of composite electrodes. For
example, if the particle-radii are fixed, then the volume loading
fractions should be established such that

 c
ed <  ed < (1 − c

el). (26)

By satisfying this constraint both the electrode and electrolyte par-
ticles should connect (i.e., percolate) through the entire thickness
of the composite electrode.

3.2. Effective three-phase boundary length

The contact perimeter between overlapping electrode and elec-
trolyte particles can be evaluated as lk,� = 2�rc, where rc is the neck
radius (Fig. 3). The neck radius depends upon the smaller-particle
radius and the contact angle 
 as [12]

rc = min(rk, r�) sin 
 (27)

When the intersection between electrode and electrolyte particles
is exposed to reactive gases within pores, the exposed length of
the intersection is the three-phase-boundary (TPB) length. Here the

entire intersection length is assumed to be TPB length.

The TPB length per unit volume �V
TPB of a composite electrode

with a binary mixture is assumed to be the product of the con-
tact perimeter between electrode and electrolyte particles and the
number of contact points per unit volume, which is the product of
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electrode and electrolyte particles are found in A-type clusters
[12]. The TPBs are distributed throughout the entire composite-
electrode structure. Electrochemical charge transfer can proceed
via ample TPBs near the electrolyte surface. Although there is avail-
able TPB throughout the electrode structure, the charge-transfer
ig. 3. Overlapping k- and �-particles, forming a three-phase boundary around the
ntersection.

he particle number per unit volume and the coordination number
12]. That is

V
TPB = led,eln

V
edZed,el = led,eln

V
elZel,ed, (28)

here the number of k particles per unit volume within the entire
omposite-electrode structure can be estimated as [3,12,18]

V
k = (1 − �g) k

4�r3
k
/3

. (29)

he porosity (i.e., gas-phase volume fraction) is represented as
g. Generally speaking, electrodes are designed to have large TPB

ength. However, TPB length is only effective electrochemically if
he participating particles are percolated through the thickness of
lectrode structure over which charge-transfer chemistry proceeds.
or typical SOFC electrodes, this charge-transfer length is typically
few tens of microns [11].

To illustrate the effects of relative particle loading, Fig. 4 shows
hree different electrode-particle-loading scenarios as explained
elow:

(a) Low electrode-particle loading: Low electrode-particle loading
occurs when 0<  ed <  

c
ed. As illustrated in Fig 4 a, most of the

electrolyte particles are in A-type clusters, with relatively few in
B- or C-type clusters. In this case, the effective TPB regions (noted
with the bracket on the left) are found only near the electrode-
interconnect surface. These TPBs are potentially electrochemically
active. However, the practical electrochemical activity depends
upon the ability of ions to be transported from the dense elec-
trolyte to the TPBs. This, in turn, depends upon the thickness
of the composite electrode and the ion conductivity of the elec-
trolyte particles. For very thin composite structures, where ions
can propagate through the entire electrode with relatively low
potential losses, most of the TPB lengths in Fig 4 a are electrochem-
ically active. Such behavior is observed experimentally, where
the polarization resistance does not depend strongly upon the
composite-electrode loading fractions of electrode and electrolyte
particles [12,27]. For relatively thick composite electrodes, ions
cannot propagate significant distances from the dense-electrolyte
surface because of low ion conductivity and thus large ohmic
losses. In this case, the TPB lengths near the electrode current
collector are essentially ineffective, rendering the entire compos-
ite electrode to be ineffective. Again, this behavior is observed
experimentally. In relatively thick composite electrodes, polariza-

tion resistance increases sharply when the electrode particles are
not fully percolated (i.e., connected networks through entire struc-
ture) [12,28,29]. Generally speaking, the ohmic resistance (ohmic
overpotential) is high in composite electrodes that use electrolyte
materials with relatively low ion conductivity or do not have fully
percolated electrode particles.
urces 191 (2009) 240–252

(b) Equivalent particle loading Equivalent particle loading occurs
when  c

ed < �ed < (1 − c
el). As shown in Fig. 4 b, most of the
Fig. 4. Illustration of composite-electrode structures for three different loadings
of electrode (dark) and electrolyte (light) particles: (a) low electrode-particle load-
ing, 0<  ed <  c

ed
. (b) Equivalent electrode- and electrolyte-particle loading, c

ed
<

 ed < (1 − c
el

). (c) High electrode-particle loading, (1 − c
el

)<  ed < 1.
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region is usually concentrated near the dense electrolyte (typi-
cally tens of microns). Because of relatively low ion conductivity
in the electrolyte particles (e.g., YSZ), the available charge is trans-
ferred from O2−within the YSZ to electrons in the conduction band
of the electrode particles (e.g., Ni) over a relatively short distance
(i.e., the electrochemically active zone). Beyond the electrochemi-
cally active zone, the electrolyte particle clustering is unimportant.
However, it is important the electrode particles percolate fully to
carry electric current up to the electrode interconnect. The results
in this paper are concerned primarily with composite electrodes
having equivalent particle loading.
(c) High electrode particle loading: High electrode-particle loading
occurs when (1 − cel)< �ed < 1. As the electrode-particle load-
ing increases (Fig. 4c), most electrode-particles belong to A-type
clusters, with the electrolyte particles being dominantly in B- and
C-type clusters. In this situation, the effective TPBs are concen-
trated near the dense-electrolyte surface. This situation could be
acceptable in an SOFC anode. The charge transfer proceeds in the
electrochemically active zone near the dense electrolyte, and the
electronic current is easily conducted upward toward the anode
interconnect. However, high electrode-particle loading may come
at the expense of too few electrolyte particles and consequently
too small TPB length. Such a structure would cause high activation
overpotentials.

The effective TPB length per unit volume, which is needed
o facilitate electrochemical charge transfer, depends upon the
eometric TPB length (i.e., independent of cluster type) and the
ercolation probabilities of the electrode and electrolyte particles.
he effective TPB length per unit volume can be written as

V
TPB,eff = �VTPBPedPel. (30)

.3. Contact area

The overall contact area per unit volume AV
ed,el is assumed to be

roportional to the cross-sectional area per contact between elec-
rode and electrolyte particles and the number of contact points per
nit volume. That is,

V
ed,el = aed,eln

V
edZed,el, (31)

here ak,� = �r2c is the cross-sectional contact area between a k-
article and a �-particle (Fig. 3).

.4. Effective TPB length per electrolyte surface area

Electrochemical charge transfer primarily takes place at three-
hase boundaries that are distributed within the electrochemically
ctive zone near the dense electrolyte. However, there is also charge
ransfer at the interface between the dense-electrolyte surface and
ntersecting electrode particles [3]. The effective TPB length per unit
lectrolyte surface area is assumed to be proportional to the contact
erimeter between an electrode particle and the electrolyte surface.
his TPB length may be expressed as the product of the number of
ontact points per unit electrolyte surface area and the percolation
robability of the electrode particle

S
TPB,eff = led,elen

S
edPed. (32)

n this expression, “ele” represents the dense electrolyte surface,
nd lk,ele = 2�rk sin 
 is the contact perimeter between a k parti-

le and the electrolyte surface. The number of k particles per unit
lectrolyte surface area can be estimated as [3]

S
k = (1 − �g) k

2�r2
k
/3

. (33)
urces 191 (2009) 240–252 245

3.5. Electronic and ionic conductivity

It is generally understood that there are important relationships
among the effective electric conductivity of the composite elec-
trode and the electrode’s microstructure, including composition,
porosity, particle-size ratio, etc. The effective conductivity through
the electrode can be separated into intra-particle conductivity and
inter-particle contributions [14,15]. The net conductivity is deter-
mined as the result of effective resistances adding in series.

3.5.1. Effective intra-particle conductivity
Chen et al. report that the effective intra-particle ionic con-

ductivity 	tra,eff (i.e., conductivity within particles) is primarily
determined by the effective relative density of electrolyte particles
�el [15]. Furthermore Jeon et al. report that intra-particle conduc-
tivity can be estimated as [3]

	tra,eff
el

	tra,o
el

= ��el = [(1 − �g) elPel]
� (34)

where 	tra,eff
el is the effective intra-particle conductivity based on

the geometric dimensions and 	tra,o
el is the intrinsic material con-

ductivity. The Bruggeman factor � is used to include the effects of
tortuous conduction paths (� is typically about 1.5). An expression
analogous to Eq. (34) is obtained for the electronic conductivity
through the electrode particles.

3.5.2. Effective inter-particle conductivity
The properties at particle interfaces (or grain boundaries) can

play an important role on overall conductivity. Especially at inter-
mediate and low temperatures, relatively low conductivity of
ceramic ion conductors (e.g., YSZ) can be attributed to low con-
ductivity at particle interfaces [15,30]. Several factors, including
particle size, inter-particle area, doping level, and inter-particle
material thickness, can significantly affect inter-particle conduc-
tivity. According to Chen et al. [14], the ion-transport resistance can
be expressed in terms of the effective inter-particle conductivity
	ter,eff

el and the intrinsic conductivity of the particle interface 	ter,o
el ,

Rter
el = L

	ter,eff
el S

= Lter
el

	ter,o
el Ster

el

. (35)

In this expression S and L represent the geometric cross-sectional
area and thickness of the composite electrode. Lter

el is the total
thickness of the particle interfaces along the current–conduction
path. Assuming that a composite-electrode can be represented
schematically as in Fig. 2, it is reasonable to assume that structure
is composed of particle layers. In this case, the net length of the
interface material is the product of the number of layers and the
thickness of an individual particle interface ı.

The inter-particle conductivity can be evaluated as

	ter,eff
el

	ter,o
el

= 2relS
ter
el

ıS
, (36)

where Ster
el is the effective contact surface area between electrolyte

particles per particle layer,

Ster
el = ael,el(2relS)n

V
el
Zel,el

2
Pel (37)

In other words, Ster
el is proportional to the surface area per contact

between two electrolyte particles ael,el, the number of the elec-

trolyte particles within a particle layer (2relS)nV

el, the coordination
number Zel,el, and the percolation probability of the electrolyte par-
ticles.

For the ceramic materials, especially for the semiconducting
materials, the inter-particle conductivity can significantly influence
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he overall conductivity. However, for the electron-conducting met-
ls the resistance caused by the inter-particle is usually negligibly
mall.

.6. Mean hydraulic pore radius

The hydraulic radius is used commonly for describing flow in
on-circular tubes and channels. Using a hydraulic radius enables
ow in non-circular channels to be analyzed analogously with rel-
tively simpler circular channels. The average pore radius is also an
ssential parameter in modeling multi-component porous-media
as-transport using a Dusty-Gas model [11,10].

The hydraulic radius for gas flow within a porous electrode can
e written as

g = 2�g

AV
s,g
, (38)

here AV
s,g is the interfacial area per unit volume between the solid

articles and pores. The interfacial area can be estimated as

V
s,g = x4�(nV

edr
2
ed + nV

elr
2
el) (39)

here x is an adjustable factor that represents the fraction of solid
urface areas belonging to the solid-pore binary phase boundary
reas. It is usually reasonable to assume that factor x is the porosity
g. Using Eqs. (38) and (39) the hydraulic pore radius may be written
s

g = 2
3

(
1

1 − �g

)(
1

 ed/red + el/rel

)
. (40)

. Multi-component mixture properties

Percolation theory for multi-component mixtures is more com-
lex than it is for binary mixtures. This is especially the case when
here is a distribution of particle-sizes. Fig. 5 illustrates a composite
lectrode with a single electrode particle size and two sizes of elec-
rolyte particles (designated el1 and el2). All the effective properties
f the composite structure depend upon the particle-size distribu-
ion. The percolation probability depends upon the coordination

umbers among the similar particle types (i.e., Zel1,el1 , Zel2,el2 ) and
lso the mutual coordination numbers (i.e., Zel1,el2 and Zel2,el1 ).

Consider a composite electrode that includes m particle sizes
or electronic conductive material (designated ed1, ed2· · ·edm) and

particle sizes for electrolyte material (designated el1, el2· · ·eln).

ig. 5. Illustration of a composite electrode with two different electrolyte particle
izes.
urces 191 (2009) 240–252

For such a mixture, the total volume fractions of electrode and
electrolyte particles may be evaluated as

 ed =
m∑
k=1

 edk  el =
n∑
k=1

 elk . (41)

The relative volume fractions of particle sizes within the electrode
and electrolyte materials are represented as

 o
edk

=  edk

 ed
,  o

elk
=  elk

 el
. (42)

The average coordination number for all n electrolyte particles is
proposed to be

Zel,el =

n∑
k=1

n∑
�=1

�elkZelk,el�

n∑
k=1

�elk

, (43)

where �elk is the number fraction of elk particles. The percolation
probability Pel for electrolyte particles is determined by the coor-
dination numbers among the same kinds of particles Zelk,elk and by
the mutual coordination numbers Zelk,el� , (k /= �). Substituting Eq.
(43) into Eq. (23) yields the percolation probability Pel.

As in the binary situation, there is also a threshold coordina-
tion number for the electrode and electrolyte particles, Zed,ed and
Zel,el, respectively. Above the threshold the particles are connected
through the entire composite-electrode thickness [12].

Zed,ed = 1.764, Zel,el = 1.764 (44)

Variables contributing to the percolation threshold are the radii
ratios and particle volume fractions  o

edk
(k∈m),  o

el�
(�∈n) and

 ed. Assuming that the radii ratios among all particle types and
all volume fractions corresponding to the materials ( o

edk
and o

elk
)

are fixed, thresholds in the total volume fractions of electrode
and electrolyte particles ( c

ed and  c
el) can be determined. Above

these thresholds electrode and electrolyte materials are connected
through the composite-electrode structure.

The effective per unit volume TPB lengths can be evaluated as

�V
TPB,eff =

m∑
k=1

n∑
�=1

ledk,el�n
V
edk
Zedk,el�PedPel, (45)

where nV
edk

is the number per unit volume of electrode particles in

size class k. The contact perimeter between overlapping electrode
(edk) and electrolyte particles (el�) ledk,el� = 2�rc is evaluated as in
the binary case, but now accommodating a range of particle sizes
(Fig. 3).

The effective TPB lengths per unit electrolyte surface area can
be estimated as

�S
TPB,eff =

m∑
k=1

ledk ,elen
S
edk
Ped, (46)

wherenS
edk

is the number per unit surface area of electrode particles

in size class k.
The effective intra-particle ion conductivity can be estimated as
	tra,eff
el

	tra,o
el

= ��el =
[

n∑
k=1

(1 − �g) elkPel

]�
. (47)

This expression is analogous to Eq. (34) for the binary situation.
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tion between the two curves is greatest near a particle-radii ratio
near unity. This means that the acceptable range of electrode vol-
ume fractions becomes smaller as the difference in particle-radii
increase. It is also evident from Fig. 7 that both curves increase as
D. Chen et al. / Journal of Po

The effective conduction contact areas between elk particles and
eighboring electrolyte particles can be estimated as

ter
elk

=
n∑
�=1

aelk,el� (relk S)n
V
elk
Zelk,el�Pel (48)

he effective inter-particle ionic conductivity can be estimated as

ter,eff
el = 	ter,o

el

n∑
k=1

2relk Selk

ıS
. (49)

he mean hydraulic radius in multi-component mixture may be
stimated as

g = 2
3

(
1

1 − �g

)
⎛
⎜⎜⎜⎜⎝

1
m∑
k=1

 edk/redk +
n∑
�=1

 el�/rel�

⎞
⎟⎟⎟⎟⎠ . (50)

. Results and discussion

.1. Model validation

It is generally difficult to measure the coordination number in
ither binary or multi-component mixtures. Simulations of random
rrays of particles are usually used to establish coordination num-
ers for particular packing scenarios. Fig. 6 shows electrode and
lectrolyte coordination numbers in binary mixtures as functions of
he fractional loading of electrode particles. In all cases, Z̄ = 6. Four
ifferent electrolyte-electrode particle-radii ratios are considered,
anging from 1.5 to 4. Fig. 6 shows very good agreement between
he percolation model and computations reported by Suzuki and
shima [18].

For any particular composite-electrode structure Z̄ depends
pon details of the fabrication processes. Without further knowl-
dge (experimental- or model-based) for a particular structure, it
s widely assumed that Z̄ = 6 [12,14,31,32]. As discussed by Ali et
l. [24], a model composite electrode may be synthesized by first
ssuming a random packing of spheres followed by sphere growth
hat simulates sintering. The random packing should lead to Z̄ ≈ 6,
nd moderate particle growth should affect the overall coordination
umber only weakly. The graphical results discussed in subsequent
ections of the present paper are based upon assuming that Z̄ = 6.

Because the model is analytic it can easily accept different val-
es for Z̄. Indeed, given specific knowledge for a particular class
f electrode microstructures, the theory can be applied to produce
eneral results. Sensitivity analysis shows that percolation thresh-
lds and TPB lengths depend significantly upon Z̄. However, the
onductivities generally are weaker functions of Z̄. In all cases, the
ualitative behavior of the results and the functional forms of the
ondimensional properties are independent of a particular Z̄.

.2. Binary mixtures

.2.1. Percolation thresholds
Percolation thresholds for electrode and electrolyte particles

n binary mixtures are predicted by Eqs. (25) and (24). It is evi-
ent that these percolation thresholds depend upon the ratio of
article-radii. Fig. 7 shows the relationship between the perco-
ation threshold (represented as electrode volume fractions,  ced,
− cel) and the particle-radii ratio rel/red. For a specified rel/red,

he volume fraction of electrode particles should be chosen within
he range ( ced <  ed < 1 − cel), thus assuring that both the elec-
rode and electrolyte particles form connected networks through
Fig. 6. Comparison of coordination numbers predicted by percolation theory and
direct multi-particle computations reported by Suzuki and Oshima [18].

the entire composite-electrode thickness. Fig. 7 shows that separa-
Fig. 7. Percolation thresholds for electrode and electrolyte particles as functions of
the particle-radii ratio.
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5.2.3. Effective conductivity
Fig. 10 shows the effective intra-particle electronic and ionic

dimensionless conductivities as functions of electrode volume
loading  ed and the particle-radii ratio rel/red. As in the case of
TPB length, there is benefit in representing the results in nondi-
ig. 8. Nondimensional effective TPB lengths per unit volume as functions of elec-
rode volume loading  ed and the particle-radii ratio rel/red.

el/red decreases. This means that as the electrode particles become
arger relative to the electrolyte particles, increased electrode vol-
me loading is needed to assure complete percolation.

.2.2. Effective TPB length
Eq. (30) represents the TPB length in a binary mixture. Following

ubstitutions for contact perimeter and particle number loading,
he equation can be rewritten as

V
TPB,eff =

[
3
2

min(red, rel)

r3ed

(1 − �g) sin 


]
 edZed,elPedPel (51)

he effective TPB length depends upon Zed,el, Ped and Pel, which are
unctions of  ed and the particle-radii ratio rel/red. The TPB length
an be written in dimensionless form as

˜ V
TPB,eff =

�V
TPB,eff

(1 − �g) sin 
/r2ed

(52)

he nondimensional effective TPB length per unit volume �̃V
TPB,eff

s independent of the particular particle-radii (red and rel), and the
ontact angle 
. However, it does depend upon the particle-radii
atio, the porosity �g.

Fig. 8 shows how �̃V
TPB,eff depends upon the electrode volume

oading ed and the particle-radii ratio rel/red. It is evident from the
gure that when rel/red = 1 the maximum �̃V

TPB,eff is at  ed = 0.5.
hen rel/red > 1, the electrode volume loading for the maximum

˜ V
TPB,eff decreases. When rel/red < 1, the electrode volume load-

ng for the maximum �̃V
TPB,eff increases. The shapes of the curves

how that �̃V
TPB,eff is only defined within certain threshold limits

hat depend upon the particle-radii ratio. That is, there are frac-
ional loadings above and below the thresholds for which there is
o effective TPB length.

In practical terms, the actual TPB length must be evaluated from
he nondimensional function. In this case, values must be assigned
or the average contact angle and the porosity. Typical values for the
ontact angle are around 
 = 15o [3,12], but details depend upon the
articular composite structure.

The effective TPB length �V
TPB,eff affects SOFC performance

reatly. The net rate of electrochemical charge-transfer chemistry
i.e., production of useful electric current) depends directly upon
he active TPB lengths. Thus, increasing effective TPB length reduces
ctivation overpotential and improves fuel-cell performance.

Although the functional form of the nondimensional �̃TPB,eff is
ndependent of the particle radius (Eq. (52)), the physical �TPB,eff
ctually is inversely proportional to the particle sizes. Consider an

xample in which red = rel = 0.25 �m and �g = 30%. Using Fig. 8, it
ollows that �V

TPB,eff = 6.05 × 1012 m/m3. However, with red = rel =
0 nm, the effective TPB length is increased greatly to �V

TPB,eff =
.51 × 1014 m/m3. All other things being equal, this reduction in
Fig. 9. Nondimensional effective TPB lengths per unit electrolyte surface area as
functions of electrode volume loading  ed and the particle-radii ratio rel/red.

particle sizes increases current density by a factor of approximately
25. Such behavior is observed experimentally [5–8].

Although usually less important practically, it is also interesting
to consider the effective TPB length per unit surface area of the
dense electrolyte at its interface with the composite electrode (Eq.
(32)). As with the TPB length per unit volume, a nondimensional
formulation is helpful; that is

�̃S
TPB,eff =

�S
TPB,eff

(1 − �g) sin 
/red
. (53)

Fig. 9 shows how �̃S
TPB,eff depends upon the electrode volume load-

ing  ed and the particle-radii ratio rel/red. As with �̃V
TPB,eff there is

a threshold below which there is no effective TPB length per unit
surface area. In fact, comparing Figs. 8 and 9 shows that the lower
thresholds for  ed are the same in both cases. However, there is
no upper threshold for �̃S

TPB,eff. For a given electrode volume load-

ing fraction (within the threshold), �̃S
TPB,eff generally increases as

rel/red increases.
Fig. 10. Nondimensional effective intra-particle conductivity for binary mixtures
as functions of electrode volume loading ed and the particle-radii ratio rel/red. The
upper panel shows the electrode conductivity and the lower panel shows electrolyte
conductivity.
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ensional terms. In this case, comparison with Eq. (34) indicates
he dimensionless form as

˜ tra,eff
ed = 	tra,eff

ed

	tra,o
ed (1 − �g)�

= [ edPed]�. (54)

n analogous definition is used for the ionic conductivity through
he electrolyte particles, 	̃tra,eff

el .
For a given electrode volume fraction (within the percolation

hreshold), as the ratio rel/red increases, 	̃tra,eff
ed increases (Fig. 10a).

owever, as rel/red increases, 	̃tra,eff
el decreases (Fig. 10b). At a cer-

ain electrode volume loading, electrode conductivity increases
s the electrolyte particle radius relative to the electrode-particle
adius increases (as long as the particle ratio is within the perco-
ation threshold). However, as the electrode electric conductivity
ncreases as a result of larger electrolyte particles, the ion con-
uctivity decreases. Because of the larger intrinsic conductivity
f electrode particles relative to electrolyte particles, the overall
onductivity of the composite electrode increases with the increas-
ng electrolyte particle-radii. This behavior is consistent with the
esults reported by Yu et al. [2].

Fig. 11 shows the dimensionless inter-particle electrode and
lectrolyte conductivities, which are defined as

˜ ter,eff
ed = 	ter,eff

ed

	ter,o
ed red sin2 
(1 − �g)/ı

, (55)

here ı is the thickness of any inter-particle material, such as a
rain boundary. For YSZ, grain-boundary thicknesses have been
stimated to be around ı ≈ 5 nm [33].

Based upon earlier literature, Chan et al. [14] reported specific
ntra-particle and inter-particle electron resistivities for LSM at
45 ◦C. The electron conductivities in LSM (nominally the electron
onductor) are both around 	tra,o

ed = 	ter,o
ed = 10000 S/m (specific

esistivity around 0.01� cm). As an example consider a situation
n which  = 50%, r /r = 1, r = 0.5 �m, �g = 0.26 and 
 =
ed el ed ed
5o. In this case, based upon the results in Figs. 10 and 11, the
ffective intra-particle and inter-particle electrode conductivities
re 	tra,eff

ed = 2126.5 S/m and 	ter,eff
ed = 99440 S/m. For this material

ter,eff
ed � 	tra,eff

ed , which means that the inter-particle conductivity

ig. 11. Nondimensional effective inter-particle conductivity for binary mixtures
s functions of electrode volume loading ed and the particle-radii ratio rel/red. The
pper panel shows the electrode conductivity and the lower panel shows electrolyte
onductivity.
Fig. 12. Nondimensional hydraulic pore-radii as functions of electrode volume load-
ing  ed and the particle-radii ratio rel/red.

is sufficiently large that it is essentially negligible in offering resis-
tance to electron conduction.

Chan et al. [14] also reported ion resistivities for YSZ at 945 ◦C.
The specific intra-particle and inter-particle ionic conductivities
for YSZ are 	tra,o

el = 6.7 S/m (specific resistivity around 15 �·cm),
and	ter,o

el = 0.05 S/m (specific resistivity around 2000�·cm). Again
consider an example where  ed = 50%, rel/red = 1, red = 0.5 �m,
�g = 0.26 and 
 = 15◦. Under these circumstances,	tra,eff

el = 1.4 S/m

and	tra,eff
el = 0.5 S/m. In this case, both intra- and inter-particle con-

ductivity contribute significantly to the net ion conduction.

5.2.4. Pore hydraulic radius
The pore radius can be an important parameter in the control-

ling gas transport within the porous electrode structure. Fig. 12 is a
nondimensional representation of pore radius as a function of elec-
trode volume fraction and particle-radii ratio. The dimensionless
radius is defined as

r̃g = rg
red/(1 − �g)

. (56)

For rel/red = 1.0, r̃g is independent of the electrode volume frac-
tion. For relatively larger electrode particles (i.e., rel/red < 0.5,
the dimensionless pore radius increases as  ed increases. For
relatively smaller electrode particles (i.e., rel/red > 0.5, the dimen-
sionless pore radius decreases as  ed increases. For a certain  ed,
r̃g increases as the electrolyte-particle radius increases relative to
the electrode-particle radius.

5.3. Three-component mixtures

This section considers a three-component mixture, comprised
of a single type of electron-conducting particle (labeled ed) and
two sizes of ion-conducting particles (labeled el1 and el2). Such an
electrode configuration is motivated by Itoh et al., who found that
composite Ni-YSZ electrodes with both coarse and fine YSZ particles
prevented the agglomeration of Ni and improved long-term cell
performance [34].

5.3.1. Percolation thresholds
Eq. (44) involves four parameters for three-component mix-

tures: red/rel1 , rel2/rel1 , ed, and o
el2

). Fig. 13 shows the percolation

regions as functions of rel2/rel1 and  o
el2

, but with the ratio red/rel1
fixed at unity. The regions between the upper dashed curve and
the lower solid curve (i.e., values of the percolating electrode-

particle volume fraction) are the regions in which both the electrode
and electrolyte particles form connected networks throughout
the entire thickness of the composite-electrode structure. High-
performance electrode structures are usually designed to be within
this fully percolated region.
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increases). For large electrode volume loading (i.e., ed > 0.5), the
surface-based TPB length becomes essentially independent of the
electrolyte size distribution.
ig. 13. Percolation thresholds  c
ed

and (1 − c
el

) in a three-component mixture as
unctions of rel2/rel1 , and  o

el2
, with red/rel1 = 1.

The region between  c
ed and (1 − c

el) decreases as rel2/rel1
ncreases at fixed volume fraction of the larger electrolyte particles

o
el2

. There is a relatively weak, but still significant, influence of the
olume loading of the larger electrolyte particles o

el2
(i.e., compare

ig. 13 a and 13b). Beyond rel2/rel1 > 10 the percolation thresholds
ecome essentially independent of the particle-size ratio.

.3.2. Effective TPB length
By restricting Eq. (45) to a three-component mixture (one size

lectrode particle red, and two sizes of electrolyte particles, rel1 and
el2 ), the equation can be rewritten as

V
TPB,eff = 3

2
(1 − �g) ed sin 
 ×

(
min(red, rel1 )

r3ed

Zed,el1PedPel

+ min(red, rel2 )

r3ed

Zed,el2PedPel

)
. (57)

n this equation Zk,�, Ped and Pel are functions of each component’s
olume fraction and the particle-radii ratios r�/rk. Because both
izes of electrolyte particles are connected to form the network (i.e.,
percolated A cluster), it may be assumed that Pel1 = Pel2 . Thus, a

ingle probability Pel appears in Eq. (57), and its value can be esti-
ated using Eqs. (23) and (43). The effective TPB per unit volume

s put into nondimensional form as

˜V
TPB,eff =

�VTPB,eff

(1 − �g) sin 
/r2ed

. (58)

ig. 14 shows the nondimensional effective TPB lengths per
nit volume as functions of electrode particle volume loading,
lectrolyte–particle-radii ratio, and the large-radius electrolyte vol-
me loading. In all cases, the electrode-particle radius is the same as
he small electrolyte-particle radius (i.e., red/rel1 = 1). The bound-
ries of the percolation thresholds are evident in Fig. 14. Outside
hese thresholds, where the particles are not fully percolated, any
PB length is ineffective. It is also evident from the figure that as the

ize and the volume fraction of larger electrolyte particles increase,
he electrode volume fraction  ed for the maximum nondimen-
ional TPB length decreases.

Fig. 15 shows nondimensional effective TPB lengths per unit sur-
ace area of dense electrolyte in a three-component mixture. The
Fig. 14. Nondimensional effective TPB lengths per unit volume in a three-
component mixture as functions of electrode volume fraction ed, rel2/rel1 , and o

el2
,

with red/rel1 = 1.

nondimensional function is formed as

�̃S
TPB,eff =

�S
TPB,eff

(1 − �g) sin 
/red
. (59)

The nondimensional surface-based TPB length increases monoton-
ically as the electrode volume fraction increases. At relatively low
electrode volume loading, the surface-based TPB length increases
as the radius of the larger electrolyte increases (i.e., r /r
Fig. 15. Nondimensional effective TPB lengths per unit surface area of dense elec-
trolyte in a three-component mixture as functions of electrode volume fraction ed,
rel2/rel1 , and  o

el2
, with red/rel1 = 1.
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the behavior is similar to the situation for the inter-particle con-
ig. 16. Nondimensional effective intra-particle electrode conductivities in a three-
omponent mixture as functions of electrode volume fraction ed, rel2/rel1 , and o

el2
,

ith red/rel1 = 1.

.3.3. Effective conductivities
Figs. 16 and 17 show the nondimensional intra-particle elec-

rode and electrolyte conductivities in a three-component mixture
s functions of electrode volume fraction  ed, rel2/rel1 , and  o

el2
.

n all cases, the electrode-particle radius is the same as the
maller electrolyte-particle radius (i.e., red/rel1 = 1). Qualitatively
he behavior is similar to situation for binary mixtures. Elec-
rode conductivity increases monotonically as the electrode volume
raction increases. For low electrode-particle loading the nondi-

ensional intra-particle electrode conductivity increases with

ncreasing radius of the larger electrolyte particles. However,
or  ed > 0.5, the intra-particle conductivity becomes essentially
ndependent of the relative sizes of the electrolyte particles. The
ondimensional electrolyte intra-particle conductivity decreases

ig. 17. Nondimensional effective intra-particle electrolyte conductivities in a three-
omponent mixture as functions of electrode volume fraction ed, rel2/rel1 , and o

el2
,

ith red/rel1 = 1.
Fig. 18. Nondimensional effective inter-particle electrode conductivities in a three-
component mixture as functions of electrode volume fraction ed, rel2/rel1 , and o

el2
,

with red/rel1 = 1.

monotonically as the electrode volume fraction increases. For low
electrode volume fraction, the electrolyte intra-particle conductiv-
ity become essentially independent of the electrolyte-particle size
ratio (Fig. 17).

Figs. 18 and 19 show the nondimensional inter-particle elec-
trode and electrolyte conductivities in a three-component mixture
as functions of electrode volume fraction  ed, rel2/rel1 , and  o

el2
.

In all cases, the electrode-particle radius is the same as the
smaller electrolyte-particle radius (i.e., r /r = 1). Qualitatively
ductivity in binary mixtures. That is, the inter-particle electrode
conductivity increases and the electrolyte conductivity decreases
with increasing electrode volume loading. Because of its functional

Fig. 19. Nondimensional effective inter-particle electrolyte conductivities in a three-
component mixture as functions of electrode volume fraction ed, rel2/rel1 , and o

el2
,

with red/rel1 = 1.
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ig. 20. Nondimensional hydraulic pore radius in a three-component mixture as
unctions of electrode volume fraction  ed, rel2/rel1 , and  o
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orm, the nondimensional inter-particle conductivity 	̃ter,eff is inde-
endent of the particle radius (Eq. (55)). However, the physical

nter-particle conductivity 	ter,eff (i.e., in dimensional form) will
ncrease with the increasing of particle sizes.

.3.4. Pore hydraulic radius
Fig. 20 shows the nondimensional hydraulic pore radius in

three-component mixture. The nondimensional pore radius is
efined as

˜g = rg
red/(1 − �g)

. (60)

he ratio of electrolyte particle sizes has a strong influence upon
he pore radius, especially at relatively low electrode volume load-
ng. The pore radius increases significantly as the larger electrolyte
article size increases.

. Summary and conclusions

A percolation theory model is developed to predict effective
roperties in SOFC composite electrodes. Such properties, includ-

ng ion and electron conductivities, three-phase boundary lengths,
nd hydraulic pore radii, are needed to assist optimizing elec-
rode structures and for inclusion into larger scale models that
se effective properties in continuum-based models. The models

ccommodate binary and multi-component mixtures of ion- and
lectron-conducting particles. The effective properties for an entire
lectrode structure depend upon physical characteristics, includ-
ng particle size, packing density, intrinsic material properties,
nd porosity. Thus the models provide a quantitative connection

[
[

[
[
[

urces 191 (2009) 240–252

between measurable and controllable characteristics at the particle
scale with overall performance at the composite-electrode scale. All
the results are presented in nondimensional form, which increases
generality for application of the model.
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